Segues

Last Friday, we buried my mother’s ashes.  I mention this partly to explain my recent hiatus from blogging and partly to introduce my topic.  It was a small family ceremony: there was no twenty-one gun salute, no priest chanting and sprinkling holy water, no parade of mourners and no second line.  This is not to say that her life was without significance.
My mother was eighty-seven years old.  She was married twice and had two successful careers.  Earlier in life, she had earned a certificate in medical technology, worked as a medical technician and married an M.D.  Later, she had earned a broker’s license, worked in real estate and married a Naval officer.  She was attractive, intelligent and witty.  She was survived by five children, twelve grandchildren and eight great-grandchildren.  As everyone does, she overcame disappointments from time to time; but she died with only one bitter regret: she never had the opportunity to attend college.
It was not that she lacked sufficiently strong grades or test scores.  It was not that college was an utter financial impossibility.  Certainly, paying for college would have been very challenging; her Irish immigrant family had struggled to survive the Great Depression.  However, she was an only child and my grandparents had worked hard to save for the future.  They were ready to make sacrifices to help her pursue higher education.  That is, they were ready until a high school counselor (assisted by my grandmother’s older sister) persuaded them otherwise.  “Why does she need to go to college?  She’s a girl.  She’ll just end up getting married and having babies.  You’re a working man.  If you waste your life savings on this foolishness, you will never be able to retire.”  And so, instead of a pre-med course of study at a four-year institution, she worked her way through medical technology trade school and made the best of it.
Nowadays – as our state colleges and universities have been forced to raise tuition to where higher education is beyond the reach of so many families – it has once again become fashionable for both politicians and educators to remark that not everyone needs a college education.  At first, it sounds almost reasonable.  Many jobs require no more than a high school diploma, after all, and in the current economy even new graduates with four-year degrees from prestigious institutions are having difficulty finding employment.  Sometimes a degree actually causes a candidate to seem “over-qualified” for the available positions, hurting their chances of an offer.  Advocates of this “high school is more than enough education for most people” world view  are also quick to point out that some of our nation’s most successful entrepreneurs never finished college, dropping out of Harvard, Stanford, and other universities to start successful ventures.  (The fact that they were admitted to such prestigious institutions, in the first place, is rarely mentioned.)  In other words, for most people, whether you attend college or not shouldn’t matter.  What matters is acquiring the skills needed for the available jobs; most people should learn a trade.  Right?
Lowering our expectations in this way is seen as simply a “down to earth,” pragmatic analysis of the “purpose” of education.  The real truth is that selective access to higher education (including selective preparation for higher education through “tracking”) has always been a mechanism for systematized social injustice.  This group does not need to go to college; they will just get married.  That group does not need to go to college; they will just end up working at low skill jobs.   Needless to say, we observe the same sorts of discrimination in access to technology for learning.  The “drop out factories” have aging computers, with slow Internet access, used mainly for “drill and practice.”  The “college prep” schools have modern computers, with faster Internet, used more for project-based learning.  Ensuring that every child has access to equitable educational opportunities, including access to and appropriate use of technology, has become the “Civil Rights Movement” for the first few decades of the twenty-first century.
Although my mother was denied the opportunity, herself, one of her greatest life achievements was helping to ensure that each of her children did have the opportunity to pursue the level of education to which they aspired.  In an ironic way, my own education could be viewed as partly attributable to the male chauvinistic, life damaging advice doled out by my mother’s high school counselor.  For that matter, my own high school counselor advised my mother that I should settle for attending a small, mid-western college (such as the one she had attended herself); she doubted that I could survive the rigors of a large university such as the University of California, despite my excellent grades and test scores.  Fortunately, my mother already knew better than to let a high school counselor lower my expectations and destroy my dreams.
We began our weekend with a burial ceremony.  What followed might seem a curious segue.  We ended our weekend by attending the wedding ceremony of our good friend, Bully Soares, who has devoted much of his career to helping Hawaii’s charter schools with technology integration.  Sunrise, sunset.  As time passes, life seems to become a blur of weddings and funerals.  As our children marry and raise children of their own, let us never waiver from our commitment that every child deserves the opportunity for a first-rate education.  Our children and our grandchildren deserve nothing less.
If we do not ensure that our children learn to think critically, including learning to use the power tools of knowledge, then our future will surely be decided by those who dabble in witchcraft and superstition.  “The world is flat.”  “Earth is the center of the universe.”  “Evolution and climate change are mere theories.”  And, implicitly through the “pragmatic” advice of so many high school counselors, “only the male children of wealthy, Caucasian families need a college education.”  In honor of my mother, I ask: as a society, are we not better than this?

My whatchamacallit’s gone haywire again.

“My whatchamacallit’s gone haywire again. Can you have a look?” I listened to the voicemail a half dozen times. That was the entire message. No name, no telephone number, no date, no time, not even the name of the school. The message was left on my personal cellphone; I suppose I should have known better than to give that out! I did not recognize the caller’s voice. I could only assume that it was a teacher calling from one of the schools where our company provides technical support. She probably did not realize that there is a whole team of people here, working with many different schools, addressing many aspects of educational technology. She probably did not consider that, given my role in our organization, it might not be particularly cost-effective for me to serve as first responder whenever a whatchamacallit goes haywire.

A more rational person would simply have deleted the message after hearing it the first time. If it were important enough, the teacher would surely call back and leave a more detailed message. Alas, the obsessive-compulsive side of me could not let it rest. It might be a relative or close friend who expected that I would recognize their voice. I was overcome by curiosity. I began playing the voicemail for other members of our team. Finally someone — I believe it might have been Tom — recognized the voice. After searching our memories and databases, we ascertained which district, which school and finally which classroom. We dispatched a member of our technical staff to “have a look.” The teacher was not available to discuss the problem. There were about six computers, a printer, a scanner, and one or two other peripheral devices in the classroom. None were marked “out of order.”  Each device powered up and appeared to be operating normally, after a quick test. Now what?  It was a wasted visit, since we just did not have enough information to work with: no trouble ticket, no screenshot, no error message, not a clue as to which device was malfunctioning. That teacher was surely frustrated the next day because her whatchamacallit was not repaired, probably interfering with her lesson plan that attempted to integrate technology into the curriculum.

For a long time, it had been my suspicion that each profession developed its own complex jargon primarily as a sort of barrier to entry, to protect practitioners from competition. While that might be partially true, there is in fact tremendous problem solving power to be gained by assigning precise names to things. Computer programmers, for example, spend a great deal of time choosing mnemonic names for variables. The very idea of a variable, after all, is to assign a name to a meaningful quantity whose value is unknown or might change. Names help us remember the relationship between structure and function. Shared names within a community of practitioners make it possible for communication to occur more efficiently — I want to say, “at higher bandwidth” — and for best practices to be replicated. (If recipes were to specify 0.3 ml of NaCl, instead of a “pinch of salt,” perhaps even I could learn to cook.) Admittedly, sometimes it has been forgotten that giving a phenomenon a name is by no means the same as explaining it. That mistake itself has a name: it is called the “nominal fallacy,” and giving this “bug” a name helps us remember to avoid falling into that very trap.

Recently, in one of our summer workshops, I noticed one 11-year-old boy who was especially adept at assembling robots using Legos. I began asking him about this skill, and I soon realized that much of his expertise came from knowing the names of almost every piece. He could describe not only the various types of gears, such as a worm gear, but also their purposes, such as trading speed for power, or changing the direction of rotation. Whether it is Printers or Robots or Internet Service Providers or Flash Drives, no one can deny that technologies of every size and shape will play a fundamental role in the future lives of the children in our schools today. If our goal is to prepare them to live productive lives in this new land, should we not add a few new, technically precise words to our own vocabularies?

Ohm’s Law is just a theory.

It was a science lab in junior high school. We were studying electricity and magnetism. The assignment was to hook up various circuits involving a battery, some resistors, and a meter. We were to record the readings from the meter and verify that E = IR. This should be easy; I had already built a Ham Radio from a Heath Kit and I even knew how to solder.

This was not a good day. My data did not seem to agree with Mr. Ohm’s theory at all. Of course, if it said so in the textbook, it must be true. Perhaps I was doing the calculations wrong? Possibly I was reading the wrong scale on the meter? Or, more likely, was I reading the color codes on the resistors incorrectly? Still, no matter how many times I double-checked my work and re-tried the experiment, E did not turn out to be anywhere close to I times R. I came back and tried again during lunch. I came back after school.  Eventually, I ran out of time and turned in my troubling results. Everyone else seemed to have gotten the right answers during class. I was devastated. In those days, I had thought I would become a physicist; but I began to rethink my career options that evening.

The next day in science class, a tough lesson unfolded for all. The actual wires we had been issued for our Ohm’s Law experiments were not the typical hookup wire they appeared to be, the sort one might use for this sort of thing. Our science teacher had played a devious trick on us. He had substituted special, high resistance wires. My data was right! At first I felt angry. Apparently, other students may have “fudged” their data so as to obtain results consistent with the textbook expectations. It was a lesson no one in our class could ever forget, a science teacher’s rendition of “the truth shall set you free.” My posting about The Science Fair and The Troubleshooting Game, written more than a few decades after that day in science lab, was, without a doubt, a direct consequence of my junior high science teacher and his trick wires.

Instead of a lab, my teacher could have lectured to us about the importance of reporting the data from our experiments carefully and accurately. He could have cited examples of infamous scientists in history who had lost credibility and ruined their careers, when their reported findings could not be replicated and colleagues began to suspect the integrity of their data. We could have taken a multiple choice test about the scientific method and answered questions about simple circuits by solving with Ohm’s formula. Instead, he had designed a hands-on learning activity that created a vivid memory, changing forever how his students saw the world. When will we devise assessments that capture this kind of impact?

Current technology provides unprecedented opportunities to design innovative learning activities that build on our students’ natural curiosity and wonder, activities that inspire and encourage, activities that demonstrate deep principles and powerful ideas. Unfortunately, technology is so often used, instead, to enable “delivery of information” to become more efficient and slightly more compelling. Providing “training” to teachers on (say) how to do presentations using an interactive white board may lead to improved “delivery.” However, the benefit of new technology is severely limited without also radically changing this outworn pedagogical approach. Professional development must go beyond “learning how to operate the device” and instead challenge educators to take on a completely different role: instead of being the “givers of knowledge,” great teachers should use technology to create learning experiences that foster a deeper kind of understanding, an internalization and “ownership” of the knowledge that will not be forgotten a few days after passing the test. Our goal for technology integration should be to design learning experiences that change, not just test scores, but lives.

Can you teach an old dog new tricks?

My grandfather could fix anything. If you had a problem with your electric food mixer, he would take it completely apart. He would lay out every screw, every washer and every wire, neatly and in order on the workbench, to study them. He would write away to the manufacturer to get the schematic and study that as well. He would clean every part so that there was not a spec of dust.  He would oil every moving part carefully and then put it all back together. The whole process would take a long time, but when he finished, your mixer would work even better than when it had first been purchased from the Sears Roebuck Catalog. It might have been his first time tinkering with that particular type of device, but once he was through with it, he could not only explain its theory of operation but he had six ideas on how to design a better one. He was an engineering supervisor at “The Western” (The Western Electric Company, the manufacturing arm of AT&T in those days). He had little opportunity for formal education, but he had lived through two World Wars, Prohibition, and the Great Depression, had thought deeply about many things and seemed very wise.

So when I obtained my first slide rule, I asked my grandfather how to use it. He was pleased by my interest, but agreed to teach me on one condition: I must first learn to do “figuring” by hand, including an understanding of the principles that enable the slide rule to work. One of his benchmarks was that I must be able to compute cube roots using a procedure similar to long division. Once I had accomplished this goal, I could then also get a circular slide rule. Now, one day I would join Texas Instruments, but long before that day I realized that being able to take a cube root by hand might no longer be an important life skill, since we lived in an era of transistor radios and handheld calculators. My deeper lessons from this experience, however, went to how much my grandfather loved knowledge and wanted to share it, and, especially, how he experienced the importance of mathematics on a personal level in his everyday life.   Students tend to be more astute than we give them credit for; if their teacher “hates math” or considers themselves “bad at math,” the main takeaway from math class will be that mathematics is something to be avoided, that even “smart people like our teacher” will get a stomach ache should they ever find themselves in a dark alley face to face with an integral sign. Surely it matters more that students sense our love of learning than that they can name the capitals of all fifty states or recite the value of π to N places?

Meanwhile, the modern version of my grandfather’s slide rule debate rages on. Is it bad to give students calculators before they have learned their multiplication tables? Should students be allowed to use Mathematica before they can derive the quadratic formula by completing the square? Should we provide access to Geometer’s Sketchpad before students can prove congruency of triangles using side-angle-side? Should students be required to use a hard bound Encyclopædia Britannica before they are given access to Wikipedia? Perhaps we are asking the wrong questions! It was not learning to take a cube root before learning to use a slide rule that stimulated my own intellectual growth; my inspiration came much more from my grandfather’s evident passion for a deeper understanding of how things work, all the way down to the individual nuts, bolts, and wires.

When my grandfather retired, my mother and father bought him an electronic musical keyboard, since he loved music but had never had the opportunity for music lessons. It was not the sort of keyboard one might buy for a professional musician: you played the melody with your right hand, by following a color coded system, superimposed over the simplified sheet music; and you added harmony by pressing a single button to select the chords with your left hand. Still, that first night, when he managed after a relatively short time reading the manual to bang out My Wild Irish Rose (in honor of my grandmother, Rose McCloskey), we all sang along and clapped. And I saw a sparkle in my grandfather’s eyes that night the likes of which I had not seen since that day when I first took a cube root by hand and then was allowed to learn all about the slide rule.

So I was completely perplexed, the next morning, when I heard that the keyboard was being returned to the store.  What my grandparents really needed, since we lived in New Jersey, was a new set of snow tires.  Someone — I doubt this was entirely my grandfather’s thinking — had reminded him that “you can’t teach an old dog new tricks.”  Shortly after that, our extended family packed up and moved to the San Diego area;  the snow tires were sold in a garage sale.  And it was not very many years later that my grandfather was diagnosed with cancer and died.

Sadly, some of our most experienced, senior educators are apparently advocates of the “old dog” canard.  “I’ve been teaching for 40 years and I never needed more technology than a chalk board and a red pen.  Why should I change now?”  “There just isn’t enough room in my classroom for that thing; take it out of here.”  “Besides, you can’t each an old dog new tricks.”  Meanwhile, we live in a world where most people will change careers two to three times in their lifetime, each time learning new skills and completely reinventing themselves.  We all pay lip service to the importance of developing students who will become lifelong learners.  Why do we forget that our students always learn more from our actions than from our words?

One senior educator I knew — one who had used all of the familiar excuses to avoid integrating technology into their own teaching despite all the pleading and cajoling I could muster — called me a few months after retiring.  “I just bought a computer.  I have time to learn it, now that I am retired. I want you to show me.”  Of course, I was — mostly — genuinely delighted.  Still, I have some human faults, so a part of me could not help but thinking, “Why, then, did you deprive your students of this wonderful opportunity to see you finally acting as a lifelong learner? Take the cursed computer back to the store and get the snow tires!”

A Few Encouraging Signs

I was already on the opposite side of the Bay when I got the call. I was scheduled to work with a school on “cloning,” a procedure to rapidly install software on a large number of computers, without carrying around a stack of CDROMs. Cloning also ensures a consistent experience for students and teachers, so it is one of those “best practices” schools need to learn about and adopt, to ensure that learning is not interrupted by one-of-a-kind glitches and that technical support does not become a black hole of pain. However, this call had to take priority.

It was the school librarian. (This was a public school, but times were better then.) “You have to come right away! All the computers in the library are infected with a virus and it is erasing our hard drives!” I was skeptical, since I knew the library computers to be Macs, but malware infestations on school networks can spread faster than head lice, so I could not ignore the risk. “OK, I will need to cancel my other appointment first, but I can be there in about an hour. Meanwhile, unplug all the computers from the network and turn them off.”

When I arrived, the mischievous looks on the faces of several students were my first clue. However, booting up a few of the computers did not show anything obviously wrong, beyond that they were disconnected from the network. I started checking to verify that there was antivirus software installed.  I asked a few questions to find out if anything else had been changed.  Then, the first symptoms kicked in. Even I had to suppress a laugh. These students had managed to bypass the desktop security and install the “Bad Dog” screensaver! In case you have never seen it, the first few minutes of this YouTube video, demonstrating the Windows version, will give you the gist. Besides wasting my day, these students had enjoyed a terrific joke at the expense of a somewhat technophobic educator.

The fear of looking foolish in front of technologically savvy students is one of the great challenges educators need to overcome. This energy and interest in tinkering can be given a positive outlet, by offering students the opportunity to become the modern equivalent of the “A/V kid” (you know, the geeky one who used to thread the filmstrip through the projector). I have also noticed that high technological expertise — once a social stigma for youngsters — now seems to increase social standing. I see this as a very encouraging sign.

There are other encouraging signs, suggesting that adoption of innovative technology may be starting to take hold and perhaps even starting to matter. One reason is that so many amazing things are now either incredibly lower in cost than their previous counterparts or they are entirely free.  Other trends I cannot explain but they seem to be positive ones.  Here are a few of my current personal favorites.

  • Netbooks, FlexBooks, eReaders, iPads, iPhones, Droids
  • Creative Commons
  • Google Docs and Apps (Cloud Computing in general)
  • GAVRT (Lewis Center for Educational Research): Goldstone Apple Valley Radio Telescope
  • Our Courts (Sandra Day O’Connor)
  • High Performing Charter Schools
  • Parent Volunteerism; Millennial Students
  • Robotics, including cheap sensors

It might be a coincidence, but it also occurs to me that we not had to deal with a school emergency involving a virus infestation for a very long time.  The threats are real, but growing numbers of schools seem to have finally  adopted some best practices, such as installing modern firewalls and keeping virus definitions up-to-date.  I’ll have more to say about these and other encouraging signs in future posts.

Top Ten Barriers to Adoption of Innovative Technology in Schools

It was the early nineties. In those days, I worked for an incredibly exciting technology company, one that has since removed the word “computer” from its name. Many of us in the company’s R&D group were passionate about emerging commercialization of what had formerly been called the ARPA Network. Imagine a hyperlinked network of computers enabling anyone, anytime, anywhere to access all of the world’s information! Unfortunately, all of the major vendors still believed that they could somehow own this “online service” opportunity, such as by providing better, proprietary content: America Online, Microsoft/MSN, Compuserve and Apple each had proponents of this belief. That “no one is in charge” of the Internet was incomprehensible. Indeed, when one of our Programs embarked on an experiment where we connected a T1 line to a school, to see what would happen and how it might be used for learning and teaching, we were told by a senior official in K-12 Marketing that it was an ill-advised, boutique project, since schools would never have that sort of bandwidth!

In those days, “using the ‘net” meant learning FTP, Telnet, Usenet, Gopher and such. Most people outside of the computer science community found these applications to be esoteric and inaccessible. However, within R&D we were contributing to sponsorship of a new application being developed at the University of Illinois’ National Center for Supercomputing Applications, called Mosaic. Mosaic enabled non-techies to browse the emerging world wide web — what most people now mean when they say “Internet.” I was charged with organizing a demonstration to try to ensure that our senior decision-makers really understood the significance of this new technology and would continue supporting the project. The meeting was to be at 8:00 AM. My team stayed until very late the night before, setting up equipment, testing the Internet connection to the room, bookmarking the URLs for compelling examples, and so on. When we left for the evening, everything was working well and we were ready for the big event.

Alas, at 7:45 AM the next morning, as the various Vice Presidents were wandering in, we discovered, much to our dismay, that the network was down. Fortunately, we had ordered food and beverages; no one would attend a meeting if you did not offer food and beverages. I was getting ready to do a tap dance, while we continued frantically troubleshooting. The computer was fine, the cable was fine, the wall outlet tested good, and there was even working Internet in other rooms in the building. Finally, at 8:05 AM or so, we found it, just in time to capture most of our audience before they left in disgust! In order to plug in the coffee pot, since there were not enough power outlets, the custodian had unplugged the router. After all, it was just a box in a closet that no one seemed to be using, so unplugging it shouldn’t matter.

The reader might be thinking, “Sure, but that was a long time ago. People know better nowadays.” Unfortunately, that would be incorrect. Even recently, we have seen trouble tickets in schools where a teacher actually unplugged the power to the classroom switch in order to plug in their laptop, and then reported that the network was down. And we frequently encounter schools where the copier, fax machine, and server cannot all be operated at the same time without blowing a fuse.

My point is that there remain serious barriers to successful adoption of technology in schools, challenges that might not seem to matter, until you have spent some time in the trenches. Here are my top ten. In homage to David Letterman, I’ll count backwards; but in honor of Kernighan and Ritchie, I’ll end at zero.

#9. Unenlightened Assessment
#8. Passwords
#7. Financial Disincentives
#6. Proprietary Lock-in
#5. Regulatory Environment
#4. Parents
#3. Systemic Resistance to Change
#2. Inadequate Professional Development and Technical Support
#1. Insufficient and Inequitable Access
#0. Budget

Most of these barriers require further explanation; I will elaborate in future posts. I also hope to suggest some ways to overcome the challenges. Some barriers, such as those posed by well-intended parents, simultaneously suggest a glimmer of hope. And, no doubt, I have missed a few. Readers are encouraged to share comments, both to remind us of barriers we have overlooked, and to help find ways to tear the barriers down.

Please join us at SVII Wednesday

If you are local to the S.F. Bay Area, please join us for a live dinner discussion at the SVII First Wednesday Society Dinner, at Bay Cafe & Restaurant, 1875 Embarcadero Road, Palo Alto, on these and related topics. Other panelists include Ruben Kleiman from Netflix, Murugan Pal from CK-12 Foundation, Jim Spohrer from IBM, and Cameron Curry from The Classical Academies. Howard Lieberman from SVII will serve as moderator. Bring your laptop and help us brainstorm initiatives to tear down the barriers to technology innovation in education!

How Timmy Got a Laptop

One of my favorite Bizarro cartoons, by Dan Piraro, shows a kindergarten class.  The children are sitting in a circle on the floor when their classroom door opens: it is a telephone call for one of the children.  Zack’s father is calling from work: he needs help with his computer!  This would not seem so funny if it did not ring true.  That children know more about technology than their parents — and certainly exhibit far less fear of it — is simultaneously one of the greatest challenges and greatest opportunities for using technology more successfully in our schools.

Recently, my friend Barbara shared this real example.  (The names have been changed to protect the innocent.)  Timmy is twelve years old.  He is visiting his school library.  By now you know that this must be a private school, since it not only still has a library but it even has a librarian!  On his way out, Timmy spies what appears to be an Apple laptop computer in the trash.  He asks the librarian, “Excuse me, Ms. Lacey, but did you really mean to throw that computer away?”

“Yes, it went dead on us.”
“Well, then, do you think I could have it?”
“Why?”
“Because I’d like to try to fix it.”

So, Ms. Lacey hands Timmy the broken laptop, but without either a battery or a power adapter.  Timmy  takes the computer home and begins tinkering.  Soon, Timmy calls up his Big Pal, Joseph, to ask for help with the laptop.  Joseph, a doctoral candidate at a prestigious institution, comes over that weekend to try to help.  Next, Timmy and Joseph visit the Genius Bar at a nearby Apple store.  The Apple genius provides additional help.  Still, the computer is still not completely operational.  Back at school, the librarian asks Tim how it is going with the dead computer.  Timmy tells her about their progress and the help that they received at the Genius Bar, but he also mentions the difficulty of making further progress without a battery.  Impressed by Timmy’s resourcefulness, Ms. Lacey says, “OK, as long as you really think you can fix it, here, take the battery, too.”

Needless to say, having the battery results in huge leaps forward.  Joseph’s brother, known to friends and family as a “computer whiz,” joins the fray, jury-rigs a compatible power adapter, and before you know it, the laptop is operational once again.  Timmy becomes ecstatic, running around the house, jumping up and down like a maniac!  (It is left as an exercise for the reader to guess what happened once Timmy’s school learned that the discarded computer had been revived.)

 One reason I like this story is that Timmy, while extremely bright, did not get the computer working completely on his own.  Instead, what he did was to draw upon his network of resources, including adults, to solve a problem that actually involved overcoming a series of sub-problems.  His ability to accomplish results through others suggests a bright future in management.  In earlier times, Timmy might have invited us to help whitewash the fence.

Readers might wonder how a computer that could be repaired by a twelve-year old, with a little help, could have ended up in the trash, in the first place.  Remember that grown-ups have neither the time nor the patience to fight with a computer that continues to misbehave after multiple repair attempts.  Inadequate technical support, even in private schools, remains one of the major barriers to successful technology integration.  The further  reality that the labor costs to repair technology often exceed the replacement value has contributed not only to growing landfills but also to inaccurate data about how much technology is really out there in our schools.  (Schools often keep their dead computers around for a while and continue to count them when reporting student:computer ratios, since better ratios make for better public relations.)  Student labor, however, is not expensive.  Even younger students have the time, patience, curiosity and motivation to just keep googling and tinkering until they get the darned thing working again.  Often, there is nothing to lose if they are unsuccessful, so why not let them try?  As one element in an overall strategy for improved technical support in our schools, student tech teams can play an important role.

Please “follow” my blog!

If you have been reading and enjoying these posts, please follow my blog!

There are several benefits to following blogs, including:

  • Notification of new postings
  • Google Friend Connect provides a “Reading List” feature, making it easy to keep track of new postings you have not yet read, for each the blogs that you follow
  • People who know you and respect your taste will be more likely to read this blog
  • Other readers may be more likely to read comments posted by followers
  • If a growing number of people follow my blog, I’m far more likely to keep posting!

To follow a blog, you must have an account on any one of these services: Google, Twitter, Yahoo!, AIM, Netlog, or OpenID.  There are many reasons to have an account beyond following blogs, and accounts are both free and easy to set up.

So, if you are enjoying this discussion, please let us know by becoming a follower.  More importantly, the discussion will become richer and create a sense of community through comments from readers.  If you have an idea to share or just think a post is interesting, cool, or funny, please let us know!  Posts are moderated and you must have an account on one of the above systems; this is just to provide minimal accountability and help ensure a respectful, “on topic” conversation.

Please don’t be shy — join our conversation!